I am the alpha and the ... gamma, and the G. Calibration of intensity-based FRET meaurements
Szabó Á, Nagy P
Cytometry, 99A:369-371. (2021)
https://pubmed.ncbi.nlm.nih.gov/32790096/
https://doi.org/10.1002/cyto.a.24206
Comprehensive Model for Epidermal Growth Factor Receptor Ligand Binding Involving Conformational States of the Extracellular and the Kinase Domains
Hajdu T, Váradi T, Rebenku I, Kovács T, Szöllősi J, Nagy P.
Frontiers in Cell and Developmental Biology 8:776. (2020)
https://pubmed.ncbi.nlm.nih.gov/32850868/
https://doi.org/10.3389/fcell.2020.00776
Quo vadis FRET? Förster's method in the era of superresolution
Szabó Á, Szendi-Szatmári T, Szöllősi J, Nagy P
Methods and Applications in Fluorescence, 8(3): 032003. (2020)
https://pubmed.ncbi.nlm.nih.gov/32521530
https://doi.org/10.1088/2050-6120/ab9b72
Homo- and heteroassociations drive activation of ErbB3
Váradi T, Schneider M, Sevcsik E, Kiesenhofer D, Baumgart F, Batta G, Kovács T, Platzer R, Huppa JB, Szöllősi J, Schütz GJ, Brameshuber M, Nagy P
Biophys J, 117: 1935–194 (2019)
https://www.ncbi.nlm.nih.gov/pubmed/31653451
https://dx.doi.org/10.1016/j.bpj.2019.10.001
Reducing the detrimental effects of saturation phenomena in FRET microscopy
Szendi-Szatmári T, Szabó Á, Szöllősi J, Nagy P
Anal Chem, 91: 6378-6382 (2019)
https://www.ncbi.nlm.nih.gov/pubmed/30993981
http://dx.doi.org/10.1021/acs.analchem.9b01504
Alterations in the properties of the cell membrane due to glycosphingolipid accumulation in a model of Gaucher disease
Batta G, Soltész L, Kovács T, Bozó T, Mészár Z, Kellermayer M, Szöllősi J, Nagy P.
Sci Rep. 8: 157 (2018)
https://www.ncbi.nlm.nih.gov/pubmed/29317695
http://dx.doi.org/10.1038/s41598-017-18405-8
The effect of fluorophore conjugation on antibody affinity and the photophysical properties of dyes
Szabó Á, Szenti-Szatmári T, Ujlaky-Nagy L, Rádi I, Vereb G, Szöllősi J, Nagy P.
Biophys J, 114:688-700 (2018)
https://www.ncbi.nlm.nih.gov/pubmed/29414714
http://dx.doi.org/10.1016/j.bpj.2017.12.011
The dipole potential correlates with lipid raft markers in the plasma membrane of living cells
Kovács T, Batta G, Zákány F, Szöllősi J, Nagy P.
J Lipid Res. 58(8):1681-1691 (2017)
https://www.ncbi.nlm.nih.gov/pubmed/28607008
http://dx.doi.org/10.1194/jlr.M077339
The Dipole Potential Modifies the Clustering and Ligand Binding Affinity of ErbB Proteins and Their Signaling Efficiency
Kovács T, Batta G, Hajdu T, Szabó Á, Váradi T, Zákány F, Csomós I, Szöllősi J, Nagy P.
Sci Rep. 6:35850 (2016)
https://www.ncbi.nlm.nih.gov/pubmed/27775011
http://dx.doi.org/10.1038/srep35850
rFRET: A comprehensive, Matlab-based program for analyzing intensity-based ratiometric microscopic FRET experiments
Nagy P, Szabó Á, Váradi T, Kovács T, Batta G, Szöllősi J.
Cytometry A. 89(4):376-84 (2016)
https://www.ncbi.nlm.nih.gov/pubmed/27003481
http://dx.doi.org/10.1002/cyto.a.22828
Maximum likelihood estimation of FRET efficiency and its implications for distortions in pixelwise calculation of FRET in microscopy
Nagy P, Szabó A, Váradi T, Kovács T, Batta G, Szöllősi J.
Cytometry A. 85(11):942-52 (2014)
https://www.ncbi.nlm.nih.gov/pubmed/25123296
http://dx.doi.org/10.1002/cyto.a.22518
Epigallocatechin 3-O-gallate induces 67 kDa laminin receptor-mediated cell death accompanied by downregulation of ErbB proteins and altered lipid raft clustering in mammary and epidermoid carcinoma cells
Mocanu MM, Ganea C, Georgescu L, Váradi T, Shrestha D, Baran I, Katona E, Nagy P, Szöllősi J.
J Nat Prod. 77(2):250-7 (2014)
https://www.ncbi.nlm.nih.gov/pubmed/24456004
http://dx.doi.org/10.1021/np4007712
Binding of trastuzumab to ErbB2 is inhibited by a high pericellular density of hyaluronan
Váradi T, Mersich T, Auvinen P, Tammi R, Tammi M, Salamon F, Besznyák I Jr, Jakab F, Baranyai Z, Szöllősi J, Nagy P.
J Histochem Cytochem. 60(8):567-75 (2012)
https://www.ncbi.nlm.nih.gov/pubmed/22562558
http://dx.doi.org/10.1369/0022155412448070
Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis
Nagy P, Claus J, Jovin TM, Arndt-Jovin DJ.
Proc Natl Acad Sci U S A. 107(38):16524-9 (2010)
https://www.ncbi.nlm.nih.gov/pubmed/20813958
http://dx.doi.org/10.1073/pnas.1002642107
Coclustering of ErbB1 and ErbB2 revealed by FRET-sensitized acceptor bleaching
Szabó A, Szöllősi J, Nagy P.
Biophys J. 99(1):105-14 (2010)
https://www.ncbi.nlm.nih.gov/pubmed/20655838
http://dx.doi.org/10.1016/j.bpj.2010.03.061
Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements
Szabó A, Horváth G, Szöllősi J, Nagy P.
Biophys J. 95(4):2086-96 (2008)
https://www.ncbi.nlm.nih.gov/pubmed/18487307
http://dx.doi.org/10.1529/biophysj.108.133371
EGFR and ErbB2 are functionally coupled to CD44 and regulate shedding, internalization and motogenic effect of CD44
Pályi-Krekk Z, Barok M, Kovács T, Saya H, Nagano O, Szöllősi J, Nagy P.
Cancer Lett. 263(2):231-42 (2008)
https://www.ncbi.nlm.nih.gov/pubmed/18276068
http://dx.doi.org/10.1016/j.canlet.2008.01.014
Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer
Pályi-Krekk Z, Barok M, Isola J, Tammi M, Szöllősi J, Nagy P.
Eur J Cancer. 43(16):2423-33 (2007)